
AD-A279 855
NPSCSI-9I4I0 Q
NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC
ELECTE

MY 2 619941S~FD
94-15758

SEMIAUTOMATIC DEABBREVIATION OF
SOURCE PROGRAMS

by Neil C. Rowel and Kari Laitinen

March 1994

Approved for public release; distribution is unlimited.

Prepared for:

DARPA Naval Postgraduate School
3701 N. Fairfax Drive Monterey, CA 93943-5118
Arlington, VA 22203-1714

94 5 25 050



NAVAL POSTGRADUATE SCHOOL
Monterey, California

REAR ADMIRAL T. A. MERCER HARRISON SHULL
Superintendent Provost

This work was sponsored by DARPA as part of the 13 Project under AO 8939, and by the Naval

Postgraduate School under funds provided by the Chief for Naval Operations

Reproduction of all or part of this report is authorized.

This report was prepared by:

Neil C. Rowe
Professor of Computer Science

Reviewed by: Released by:

Yutaka Kanayama MARTO
Associate Chairman for Dean of Research
Technical Research



UNCLASSIFIED
SECURITY GrAS19 TI CF TlIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
22 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIOWAVAJLABILITY OF REPORT

2b. DECLASSIFICATK•N4IDUI • VING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPSCS-94-003 Naval Postgraduate School

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (t a,2cable) DARPA
Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 3701 N. Fairfax Drive
Arlington, VA 22203-1714

8a. NAME OF FUNDINGISPONSORING tb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERO ATIN (if a bk) AO8939
I Postgraduate School NPS

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

Monterey, CA 93943

11. TITLE (Include Security Classification)

Semiautomatic Deabbreviation of Source Programs

12. PERSONAL AUTHOR(S)
Neil C. Rowe and Kari Laitinen

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PA COUNT
Progress FROM Jan93 TO Dec93 1994 3

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD f GROUP SUB-GROUP software engineering, abreviations, tools, comprehensibility, understand-
ability, query optimization

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Evidence suggests that using variable and procedure names consisting of whole natural-language words helps pro-
gram comprehensibility. We describe a tool to help users make their programs more comprehensible and thus
maintainable by suggesting replacements for the abbreviations in the programs. Its heuristics limit the search for
possible "deabbreviations" to just a few good guesses. This is done by examining words in program comments and
in a large English dictionary to recognize pieces of English words within multiword abbreviations. Experimental
results show the tool is easy to use and results in significantly improved program comprehensibility.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

RESPONSIBLE INDIVIDUAL 22b. TELEPHONE(Inglude Area Code) 22c. OFFIE SYMBOL
Neil C. Rowe (408) 656-2 462 CSRp

DO FORM 1473, 64 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED



Semiautomatic Deabbreviation of Source Programs

Neil C. Rowel and Kari Laitinen

Department of Computer Science

Code CS/Rp, U. S. Naval Postgraduate School

Monterey, CA USA 93943

(rowe@cs.nps.navy.mil)

ABSTRACT

Evidence suggests that using variable and procedure names consisting of whole

natural-language words helps program comprehensibility. We describe a tool to help

users make their programs more comprehensible and thus maintainable by suggesting

replacements for the abbreviations in the programs. Its heuristics limit the search for

possible "deabbreviations" to just a few good guesses. This is done by examining

words in program comments and in a large English dictionary to recognize pieces of

English words within multiword abbreviations. Experimental results show the tool is

easy to use and results in significantly improved program comprehensibility.

This work was sponsored by the Defense Advanced Research Projects Administration, as part of the

13 Project under AO 8939, and by the Technical Research Centre of Finland (VTT).

Accesion For
NTIS !"RA&I

DTIC "IAF3
Unan'-;ounced U
Justification

Distributio;, I

Avii &idlor
Dist Special



-2-

1. Introduction

Abbreviations of natural-language words are common in computer programs, most frequently for pro-

cedure and variable names. Some evidence suggest that abbreviations, as opposed to the full natural-

language words from which they are derived, adversely affect comprehensibility of a source program.

[Schneiderman, 1980, pages 70-751 and [Weissman, 19741 showed experiments in which significant

improvement in ability to answer questions about a program occurred when mnemonic names were used

instead of abbreviated names in the program, and [Laitinen, 1992] showed programmers preferred to

work with programs having natural-language-word or "natural" names. Natural names can be developed

early in the software design cycle by a structured methodology like [Laitinen and Mukari, 1992]. But

not all programmers will accept this additional imposition, and more importantly, this methodology can-

not be used with existing programs that need maintenance. So we have explored semi-automatic

replacement of abbreviations by natural names in existing programs and have developed a prototype

tool. This new tool for software engineering we call a "deabbreviator". Its output can either replace

the original program or serve as an aid to its understanding, facilitating subsequent modification or

reuse of the program.

Some simple tools replace abbreviations according to a fixed list, including DataLift from Peoplesmith.

Inc., Magic Typist from Olduvai Corp., and The Complete Writer's Toolkit from Systems Compatibility

Corp. [Laitinen, 1992] mentions a more sophisticated tool that also checks for conflicts among replace-

ment names. Unfortunately, abbreviations vary considerably between applications, and the general-

purpose replacement lists of these programs are of only limited help for the often specialized task of

software description. For example, "lbr" is common abbreviation for "labor" in business, but not in a

biological laboratory. [Rosenberg, 1992] lists an average of two different interpretations for ever),

three-word abbreviation, even for the restricted domain of "information technology" and the restriction

to common interpretations. An improvement would be application-specific abbreviation pairs plus

"deabbreviation" rules that can intelligently guess replacements not in the list. But the challenge is to

find a way to limit the seemingly unbounded number of words that could be checked as the source of



-3-

an abbreviation.

2. Data structures

Our deabbreviation tool uses the following support files, all hashed:

a dictionary list of 29,000 common English words;

-- a list of reserved words for the programming language and/or operating system whose programs

are being analyzed;

- an auxiliary list of valid English words found in previous runs but not in the preceding files;

-- common words of the application domain, used as additional comment words (optional);

-- standard abbreviations used in computer software, with their deabbreviations;

-- replacements accepted for previous programs (optional).

The dictionary is necessary to define the acceptable natural names in a program. To obtain it, we com-

bined wordlists from the Berkeley Unix "spell" utility, the GNU Emacs "ispell" utility, the first author's

papers, some saved email, and captions from 100,000 pictures at a Navy Laboratory. We removed

abbreviations from these sources manually, and were particularly liberal in removing words under four

letters in length. This gave us a reasonably broad vocabulary of about 29,000 English words. This dic-

tionary is then supplemented with reserved words specific to the programming language being used, and

any new words confirmed by the user on previous runs. The user may also include a optional file of

words specific to the real-world domain that the program addresses; these can duplicate the dictionary,

but have special priority in trying to find deabbreviations.

We also manually compiled a "standard abbreviation list" of 168 entries from a study of programs writ-

ten by a variety of programmers, supplemented by the list of [Rosenberg, 19921; example entries are

"pitr -> pointer" and "term -> terminal". These are the abbreviations we observed repeatedly in a wide

range of program examples. The list was kept short to reduce domain-dependent alternatives; and it

was not made any shorter because explicit listing saves time with common abbreviations, although

many entries could be derived from the abbreviation rules discussed next. The list is supplemented by



-4-

deabbreviations confirmed or provided by the user, as we will discuss.

3. Deabbreviation methods

Deabbreviating means replacing an abbreviated name with a more understandable "natural" one consist-

ing of whole English words. To deabbreviate, we "generate-and-test": We select candidates and abbre-

viate them various ways. trying to obtain a match with a given abbreviation. The abbreviation rules

derive mostly from our study of example programs, with some ideas from [Bourne and Ford, 1961J.

Three "word abbreviation" methods are used: (1) match to a standard deabbreviation, previous user

replacement, or "analogy" (see below), as confirmed by lookup in the corresponding hash table; (2)

truncation on its right end of some word in the program's comments, as long as at least two letters

remain and at least two letters are eliminated, and (3) elimination of vowels in a comment word, pro-

vided at least two letters remain including the first. Then a "full abbreviation" is either one, two, or

three "word abbreviations" appended together. These methods together explain about 98 percent of

abbreviations we observed in example programs, as abbreviations rarely get more complicated than

three-word, although we do have ways to find longer abbreviations as discussed below. For an mr-letter

word, word-abbreviation method (1) generates 0 (1) abbreviations for matching, method (2) 0 (m), and

method (3) 0(1); so the whole algorithm generates 0(m3) full abbreviations. Cubic behavior was

observed to be the limit if processing were to be fast enough.

A key feature of our approach is the restriction of word-abbreviation methods (2) and (3) to words in

the comments on the source program, supplemen.ed by optional application-domain words. With at

29000-word dictionary, there would be 25 million million combinations to abbreviate otherwise. We

believe that if a program is properly commented, the comments should contain most of the natural

names that would be appropriate to use in its variable and procedure names beyond the standard pro-

gramming words like "pointer". But we do not insist that comment words be near their abbreviations,

as comments can have global scope and can reference backward as well as forward. Note that word-

abbreviation methods (2) and (3) leave intact the initial letter of a word or phrase, consistent with the



-5-

programs we studied, and that eliminates many possibilities.

Since a word can have many abbreviations, the nondeterminism of Prolog is valuable, as it permits

backtracking with depth-first search to get further deabbreviations until the user finds one acceptable.

The above ordering of the methods is used heuristically in this depth-first search, so that direct hash

lookups are tried before deleting characters, single-word abbreviations before two-word, and two-word

before three-word. These heuristics derive from cost analysis of the methods. With two-word and

three-word methods, an additional heuristic, based on study of example programs, considers rightmost

splits first, so "tempvar" would be first split into "tempv" and "ar". then "temp" and "var".

4. Control structure

The control structure of the deabbreviation tool has similarities to those of spelling correctors [Peterson,

1980], text-error detectors [Kukich, 19921, and copy-editor assistants like [Dale, 1989]. But abbreviated

words are farther from their sources than misspelled words are, so a deabbreviator requires more com-

putation per word: and abbreviating loses so much information that it cannot be inverted and we must

rely on generate-and-test.

Processing has three passes. On the first pass, the input program is read in, comment words more than

3 characters are stored, and non-comment words are looked up in the dictionary. Reserved words of the

programming language, words within quotation marks, words containing numbers, and words already

analyzed are ignored. Morphology and case considerations complicate the lookup. To simplify matters,

our dictionary and standard abbreviations are kept in lower case, and comment and unknown non-

comment words are converted to lower case for matching. Similarly, most of the dictionary is minus

the standard English suffixes "s", "ed", and "ing", and unknown words for comparison are stripped of

any such endings, using the appropriate morphological rules of English for undoubling of final con-

sanants, adding a final "e", and changing "i" to "y". The unknown word and all stripped words are tried

separately, to catch misleading words like "string" and "fuss".



"-6-

The second pass then individually considers the words that did not match on the first pass. Full abbre-

viations are generated to try to match the given word. Plurals are also tried to match to the given word

or pieces of it. Possible deabbreviations are individually displayed to the user for approval; if the user

rejects them all, the user is asked if the word can be added to the dictionary. If not, the user must sup-

ply a replacement, which is recursively checked to contain only dictionary words, allowing underscores

for punctuation. Replacements can be specified either global for the entire program or local to the pro-

cedure definition.

We considered ranking of the alternative deabbreviations for a word during the second pass, and

presenting the most likely to the user first. However, we concluded that this was not cost-effective. It

would require about 10 seconds per unknown word in our current implementation. To do it properly,

we must determine the frequency of every one of the 29,000 words in the dictionary, and frequencies

would vary with domain. Abbreviation methods also vary considerably in frequency even with the

same programmer.

The third pass changes the names in the program as decided on the second pass. Name collisions can

occur if user-approved deabbreviations are identical with words already used in the program, and the

user is then given a warning.

5. Analogies

Replacements can also be indirectly inferred from analogies, and this is one of the most important

features of the tool. For instance, if the user confirms that they want to replace "buftempfoobar" with

"bufferutemporaryfoobar", we can infer that a replacement for "buf" is "buffer" and for "temp" is

"temporary", even if we do not recognize "buf" and "foobar". Previous user replacements can be found

within an analogy too, to simplify matters, and multiple deabbreviations of the same abbreviation must

be permitted to be inferred (although at lesser priority than user-sanctioned deabbreviations). We

discovered that analogies are very helpful in deabbreviating real programs because user names are often

interrelated. Such analogies should be found after a replacement is approved by the user, not during the



-7.

generation of deabbreviations when there would be too many possibilities to consider. Caching of

analogies that are rejected is important to prevent requerying them.

Replacements can also be inferred from analogies between two previous replacements. For instance, if

the user confirmed that "temp" should be replaced by "temporary", and then confirmed "tempo" should

be replaced by "temporaryoperator", we should infer that one possible replacement for "o" in this pro-

gram is "operator" even though "tempo" is an English word. "tempo" is a truncation of "temporary",

and one-word abbreviations are quite ambiguous. Then if "tempb" occurs later and "b" is known to be

replaceable by "buffer", the deabbreviation "temporary buffer" will be the first guess. Analogizing can

also infer deabbreviations more than three words long that the standard abbreviation rules cannot; for

instance, if "tempg" is "temporaryglobal", "var" is "variable", and "nm" is "name", then "tempgvarnm"

is "temporaryglobal variable.name". With such analogizing, the system can become progressively

more able to guess what the user means as it works on a program.

Acronyms are not recognized by the standard deabbreviation methods, so analogies are especially

important for them, to recognize them as components of abbreviations. Acronyms make poor names

since they highly ambiguous, but they were rare in programs we studied.

Previous user replacements (whether generated by the program or by the user) can be very helpful in

analogies. We give the user the option of keeping the replacements (both explicit and inferred) from

earlier programs that were deabbreviated, so that modules of related programs can be treated together.

6. Experiments

To test the tool, 15 C programs were deabbreviated by the second author and 7 Prolog programs were

deabbreviated by the first author. The programs were written by a variety of programmers for a variety

of applications. CPU time averaged about 1.5 seconds per source-program word with semi-compiled

Quintus Prolog running on a Sun SparcStation, with questions to the user, after initialization, coming at

the comfortable rate of about one per every two seconds, although there was significant inter-program



-8-

variation. The C programs had a total of 20,990 symbols, all but 1096 distinct occurrences of which

were a-priori acceptable (as either dictionary entries, numbers, or punctuation); of the 1096, 598 pro-

posed deabbreviations were accepted by the user, 434 proposed deabbreviations were rejected, 274 were

added as new words to the dictionary, 175 required explicit user replacements, and 49 short codes were

left untouched. The Prolog programs had 5850 symbols, all but 605 distinct occurrences of which were

a.priori acceptable; of the 605, 371 proposed deabbreviations were accepted by the user, 123 proposed

deabbreviations were rejected, 9 were added as new words to the dictionary, 140 required explicit user

replacements, and 85 short codes were left untouched. Thus the tool guesses acceptable replacements

more than half the time, and appears to save users significant time in the task of replacing names in a

program. These results also indicate that multiple possible deabbreviations are not common, and sup-

port our decision not to rank deabbreviations of a word.

We tested some tool output on 24 subjects, third-quarter students of a M.S. program in Computer Sci-

ence. We used two programs written previously for other purposes, one in C of 373 symbols, and one

in Prolog of 118. Half the subjects got the original C program and the deabbreviation of the Prolog

program; the other half got the deabbreviation of the C program and the original Prolog program. We

asked 10 multiple-choice comprehension questions in 20 minutes about the C program and 8 questions

in 15 minutes about the Prolog program. Some questions asked about purposes ("Why are there four

cases for median-counts?"), some about execution behavior ("What arguments to median should be

bound before querying it?"), and some about exceptions ("What happens if the word being inserted into

the lexicon is there already?"). Subject performance was better on both deabbreviated programs:

7.69/10 versus 7.17/10 for the C program, and 4.64/8 vs. 3.62/8 for the Prolog program. Using Fisher's

2-by-2 test, we confirmed that output of the deabbreviator gave higher comprehensibility at significance

level 4.8%.

7. Conclusion

Our experience and experiments show that a deabbreviation tool with inferencing is easy to use and can



-9-

definitely improve the comprehensibility of a source program. It could be educational, since it requires

the user to carefully describe program variables and procedures. But more importantly, it could help in

the costly task of software maintenance.

8. References

C. P. Bourne and D. F. Ford. A study of methods for systematically abbreviating English words and

names. Journal of the ACM, 8, (1961), 538-552.

R. Dale, Computer-based editorial aids. In Recent developments and applications of natural language

processing, London: Kogan Page, 1989, 8-22.

K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys, 24, 2

(December 1992), 377-439.

K. Laitinen, Using natural naming in programming: feedback from practitioners. Proceedings of the

Fifth Workshop of the Psychology of Programming Interest Group, Paris, December 1992. Also

included in VTT Research Notes 1498, The principle of natural naming in software documentation,

Technical Research Centre of Finland, 1993.

K. Laitinen and T. Mukari, DNN -- Disciplined Natural Naming. Proceedings of the 25th Hawaii Inter-

national Conference on System Sciences, vol. II, 1992, 91-100.

J. L. Peterson, Computer programs for detecting and correcting spelling errors. Communications of the

ACM, 23, 12 (December 1980), 676-687.

J. M. Rosenberg, McGraw-Hill dictionary of information technology and computer acronyms, initials,

and abbreviations. New York: McGraw-Hill, 1992.

B. Schneiderman, Software psychology: human factors in computer and information systems. Cam-

bridge, MA: Winthrop, 1980.



- 10-

L. M. Weissman, A methodology for studying the psychological complexity of computer programs.

Ph.D. thesis, Dept. of Computer Science, University of Toronto, 1974,



Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943

Research Office
Code 08
Naval Postgraduate School
Monterey, CA 93943

Dr.Neil C. Rowe, Code CSRp
Naval Postgraduate School
Computer Science Department
Monterey, CA 93943-5118 50

Mr. Russell Davis
HQ, USACDEC
Office of Naval Research
Attention: ATEC- 1 M
Fort Ord, CA 93941

Ralph Wachter, Code 333
Computer Science
Office of Naval Research
Ballston Tower One
800 North Quincy St.
Arlington, VA 22217-5660


